Space Elevator Power System Analysis and Optimization

Ben Shelef, the Spaceward Foundation

Abstract

This paper lays out the basics constraints for a Space Elevator power system, performs parameter optimization, and compares the results with real-life technology parameters. The paper also considers the special case of solar climbers that have the additional constraint of a once-per-day launch rate.

1 Motivation

Being a transportation system, a primary goal in designing a Space Elevator system is maximizing payload throughput. Typical design parameters that can be varied to achieve this maximum are: Payload fraction (If we allocate more mass to the power system, a climber can move faster, but can carry less payload), Frequency of launch and number of simultaneous climbers on the ribbon, etc.

Since the Space Elevator is linearly scalable, we normalize the calculations by the maximum mass that is allowed to hang from the bottom of the tether (m\text{max}). Thus a “20-ton” Elevator is one that can support a single 20 ton climber at ground level, including all safety margins. (In turn, m\text{max} is a fraction of the total tether mass m\text{T}, with the tether mass fraction TMR defined as m\text{max}/m\text{T})

So for example, for a 20 ton elevator, we might choose to use 15 ton climbers (0.75 M\text{max}), and the tether might weigh (depending on the nanotubes) anywhere between 200 and 400 m\text{max}. We define a “Standard throughput unit” (STU) as being able to launch one m\text{max} per year. By default, throughput will refer to the amount of payload carried.

To simplify matters, we divide the mass of the climber into payload and power system, assuming the “dead structure” is light in comparison to either of them. (The power system mass includes all components that scale with the power level, such as PV panels, motors, power electronics and radiators.

2 Ascent power profile

The power required to move a mass at a certain velocity is a function of the effective gravity at the altitude that the climber is at: P = m·g\text{eff}·v, where g\text{eff}(r) = g(r_e/r)^2 - \omega_e^2 r_m (r_e = 6400 km is the radius of the earth, and \omega_e = 7.3E-5 rad/sec, the angular velocity of the Earth and g is the surface gravity).

For r < 2r_e, we can approximate this very well as simply g\text{eff}(r) = g(r_e/r)^2, which means that for a specific power system, the climber’s velocity will increase according to a square law v(r) = P/(m·g) · (r/r_e)^2 as it moves out, until it reaches some maximum terminal velocity v\text{T} determined by the tether handling system. From that point onwards, the climber moves at v\text{T}, and the power system is under-utilized.

Defining power density \rho_p as power system mass divided by the power it can deliver, and power system mass fraction \beta as the mass of the power system divided by the mass of the climber, the total available power is P = m·\beta·\rho_p, the initial velocity is v_e = \beta·\rho_p/g, and so the velocity is v(r) = \min[V_T, v_e(r/r_e)^2]. The terminal velocity point r\text{T} is located where the climber reaches v\text{T}, which happens at v\text{T} = v_e(r/r_e)^2, or at r\text{T} = r_e(v\text{T}/v_e)^0.5. The amount of payload carried by the climber is of course (1-\beta)m.

The formula for the time it takes a climber that is following a constant power velocity profile to cover the distance between r_e and r (for r < r\text{T}) is:

$$t = \int_{x=r_e}^{x=r} dx/v(x) = \int_{x=r_e}^{x=r} v_e^{-1} (x/r_e)^{-2} dx = (r_e/r)(r-r_e)/v_e = t_0/Q$$

Where t_0=(r-r_e)/v_e is the time it would have taken the climber to cover the distance if it were moving at a constant velocity, and Q=r/r_e is the radius ratio.

The distance traveled by a constant power velocity climber (relative to r_e) is: d/r_e = (r-r_e)/r_e = u(r/v_e-t).
3 Handoff

The spacing between climbers can be characterized by a handoff fraction \(k_H \), such that a new climber is launched when the old climber reaches the altitude where \(e_H = k_H \). The handoff altitude \(r_H = r_H/\beta \cdot \rho \) is the location where this happens, and the time since launch that this happens at is defined as \(t_H \).

To keep the total tether load from exceeding the equivalent of one \(m_\text{max} \) climber at ground level, the mass of each climber can only be \(m_\text{max} - (1-k_H) m_\text{max} \), so that the geometrical series \((1-k_H) + (1-k_H)k_H + (1-k_H)k_H^2 + \ldots = 1 \), (This is slightly conservative, since the spacing between the climbers does not remain constant, and there are only a finite number of climbers).

If the initial parameters are such that \(r_T > r_H \), (or \(v_T(v_T/v_H)^{0.5} > k_H^{0.5} \)) then the climber will follow a constant-power velocity profile all the way out to the handoff point. We call this a “power limited” profile. Otherwise, the climber will “max-out” on the way to the handoff point, and the profile is called “speed limited”. There is also the hypothetical possibility the \(r_T < r_e \), which means that the climber power system starts out under-utilized, even at ground level. This is clearly a non-optimal case.

4 Throughput

The payload per climber is therefore \(m_\text{payload} = (1-k_H)(1-\beta) \) and the mass throughput of the system is \(\text{PMT} = (1-k_H)(1-\beta)/t_H \). The more frequently we launch climbers, the smaller each one can be, but the larger the throughput. This trend continues to the limiting case of a continuous (variable speed) belt of cargo, though we see no practical way of implementing this case. Similarly, the faster we move, the more climbers we can launch, but the larger power systems leave less room for payload.

The parameters dictated by technology are the power density \(\rho_p \) and the terminal velocity \(v_T \). The variables we can tune are the handoff constant \(k_H \), the power system mass fraction \(\beta \), and the handoff time \(t_H \). The variables represent only 2 degrees of freedom, since clearly once we set \(\beta \) and \(k_H \), \(t_H \) is already determined.

Under power limited scenarios, while \(v_T \) can still be tuned, it does not affect the throughput, since it only alters the behavior of the climber beyond the handoff point.

5 Optimization

To find the maximum throughput:

The relative payload is

\[
m_\text{payload} = (1-k_H)(1-\beta)
\]

And the throughput is

\[
\text{PMT} = (1-k_H)(1-\beta)/t_H
\]

We can now link \(\beta \) and \(k_H \) through \(t_H \).

Speed-limited:

Initial velocity: \(v_e = \beta \cdot \rho_p \)

Terminal point: \(r_T = r_T(v_T/v_H)^{0.5} = r_e \cdot Q_T \)

Terminal altitude: \(a_T = r_T/r_e \)

Time to terminal point: \(t_T = (r_T/r_T)(r_T-r_e)/v_e = (r_T/v_e)(Q_T-1)/Q_T \)

Handoff point: \(r_H = r_T/k_H^{0.5} \)

Handoff altitude: \(a_H = r_H/r_e \)

Time to handoff point: \(t_H = t_T + (r_H/r_T)/v_T = (r_T/v_e)(Q_T-1)/Q_T + (r_T/k_H^{0.5} \cdot r_H Q_T)/v_T = (r_T/v_T) \cdot [Q_T(Q_T-1) - Q_T + k_H^{0.5}] = (r_T/v_T)[Q_T(Q_T-2) + k_H^{0.5}] \)

Extracting \(k_H \):

\[
k_H = \left[\left(t_Hv_H/v_e - Q_T(Q_T-2) \right)^2 \right]
\]

Power-limited:

Initial velocity: \(v_e = \beta \cdot \rho_p \)

Handoff point: \(r_H = r_T(v_T/v_e)^{0.5} = r_e \cdot (k_H)^{0.5} \)

Handoff altitude: \(a_H = r_H/r_e \)

Velocity at handoff point: \(v_H = v_T Q_H^{0.5} \)

Time to handoff point: \(t_H = (r_T/r_H)(r_H-r_e)/v_e = (r_T/v_e)(Q_H-1)/Q_H = (r_T/v_H)Q_H Q_H^{0.5} \)

Extracting \(\beta \):

\[
\beta = \frac{v_e}{\rho_p} - \frac{(g/\rho_p) \cdot (r_H/r_H) \cdot (Q_T-1)/Q_H}{c_H} \cdot \frac{(g/\rho_p) \cdot (r_H/r_H)}{c_H}
\]

Defining:

\[
c_H = \frac{(g/\rho_p) \cdot (r_H/r_H)}{c_H}
\]

Solving for \(k_H \):

\[
k_H = Q_H^{0.5} = \left[c_H / (c_H \beta) \right]^{0.5}
\]

It is possible to express \(dP/d\beta \) is closed form, but the resulting expression is only solvable numerically. For the same effort, it is more interesting to directly numerically optimize \(\text{PMT}(\beta) \).
6 Results

The worksheet is implemented in MS Excel, and works with the built-in numerical solver to yield optimal values for PMT in respect to β. Below is one instance of the optimization, for $\rho_p = 1500$ and $v_T = 80$. The source worksheet is available online.

<table>
<thead>
<tr>
<th>Earth radius r_e m</th>
<th>6.4E6</th>
<th>6.4E6</th>
<th>6.4E6</th>
<th>6.4E6</th>
<th>6.4E6</th>
<th>6.4E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth rotation ω_e rad/sec</td>
<td>7.3E-5</td>
<td>7.3E-5</td>
<td>7.3E-5</td>
<td>7.3E-5</td>
<td>7.3E-5</td>
<td>7.3E-5</td>
</tr>
<tr>
<td>Earth gravity g m/sec2</td>
<td>9.8E0</td>
<td>9.8E0</td>
<td>9.8E0</td>
<td>9.8E0</td>
<td>9.8E0</td>
<td>9.8E0</td>
</tr>
<tr>
<td>power density ρ_p Watt/kg</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>terminal velocity v_T m/s</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>delta-β</td>
<td>-0.04</td>
<td>-0.02</td>
<td>0</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>power mass ratio β</td>
<td>0.199</td>
<td>0.219</td>
<td>0.239</td>
<td>0.259</td>
<td>0.279</td>
<td>0.239</td>
</tr>
<tr>
<td>handoff time t_h sec</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>Initial Velocity v_o m/s</td>
<td>30.5</td>
<td>33.6</td>
<td>36.6</td>
<td>39.7</td>
<td>42.7</td>
<td>36.6</td>
</tr>
<tr>
<td>$\sqrt{v_T/v_o}$</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>terminal point r_T m</td>
<td>1.0E7</td>
<td>9.9E6</td>
<td>9.5E6</td>
<td>9.1E6</td>
<td>8.8E6</td>
<td>9.5E6</td>
</tr>
<tr>
<td>terminal altitude a_T km</td>
<td>3966</td>
<td>3482</td>
<td>3060</td>
<td>2688</td>
<td>2356</td>
<td>3060</td>
</tr>
<tr>
<td>terminal time t_T hr</td>
<td>22.3</td>
<td>18.7</td>
<td>15.7</td>
<td>13.3</td>
<td>11.2</td>
<td>15.7</td>
</tr>
<tr>
<td>handoff constant k_h</td>
<td>0.348</td>
<td>0.314</td>
<td>0.292</td>
<td>0.276</td>
<td>0.264</td>
<td>0.292</td>
</tr>
<tr>
<td>handoff point r_h m</td>
<td>1.1E7</td>
<td>1.1E7</td>
<td>1.2E7</td>
<td>1.2E7</td>
<td>1.2E7</td>
<td>1.2E7</td>
</tr>
<tr>
<td>handoff altitude a_h km</td>
<td>4454</td>
<td>5018</td>
<td>5449</td>
<td>5783</td>
<td>6045</td>
<td>5449</td>
</tr>
<tr>
<td>handoff time (chk) t_h sec</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>mpayload m_p mmax</td>
<td>0.52</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.53</td>
<td>0.539</td>
</tr>
<tr>
<td>Throughput PMT STU</td>
<td>191</td>
<td>195</td>
<td>197</td>
<td>196</td>
<td>194</td>
<td>197</td>
</tr>
</tbody>
</table>

Ignore columns with red indicators

<table>
<thead>
<tr>
<th>C_H</th>
<th>0.484</th>
<th>0.484</th>
<th>0.484</th>
<th>0.484</th>
<th>0.484</th>
<th>0.484</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_H</td>
<td>1.700</td>
<td>1.828</td>
<td>1.978</td>
<td>2.154</td>
<td>2.364</td>
<td>1.978</td>
</tr>
<tr>
<td>handoff constant k_h</td>
<td>0.346</td>
<td>0.299</td>
<td>0.256</td>
<td>0.216</td>
<td>0.179</td>
<td>0.256</td>
</tr>
<tr>
<td>handoff point r_h m</td>
<td>1.1E7</td>
<td>1.2E7</td>
<td>1.3E7</td>
<td>1.4E7</td>
<td>1.5E7</td>
<td>1.3E7</td>
</tr>
<tr>
<td>handoff altitude a_h km</td>
<td>4478</td>
<td>5300</td>
<td>6256</td>
<td>7383</td>
<td>8729</td>
<td>6256</td>
</tr>
<tr>
<td>handoff time (chk) t_h sec</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
<td>86400</td>
</tr>
<tr>
<td>mpayload m_p mmax</td>
<td>0.524</td>
<td>0.547</td>
<td>0.566</td>
<td>0.581</td>
<td>0.592</td>
<td>0.566</td>
</tr>
<tr>
<td>Throughput PMT STU</td>
<td>191</td>
<td>200</td>
<td>207</td>
<td>212</td>
<td>216</td>
<td>207</td>
</tr>
</tbody>
</table>

Instructions:
Enter values in the 3 parameter cells marked:
Experiment with the value in the β cell:
Control the 5 test case columns using delta-β:
The Red/Green indicators show which scenario (power or speed limited) is applicable.
(RED-RED means that a different condition (such as $v_e > v_T$) is violated)

When ready, hit alt-T,V (tools--\rightarrowsolver) and optimize PMT with respect to β.

The parameter space is 3-dimensional, and we are interested in multiple resultant quantities. The approach taken for aggregating the data is to hold t_h constant and plot one table per observed quantity, then experiment with other values of t_h.

This process requires a considerable amount of manual work, but gives the experimenter a good insight into the behavior of the system.
Below are the results for daily-cycle operations (t_d=86400). Power limited scenarios are shaded. Our focus is on the payload throughput (PMT). m_p and k_H are shown for “situational awareness”.

The shaded region is larger since the smaller climbers need to get out of the way faster and so carry larger power systems, thus maxing out sooner. For this reason the lower performing system gains up to 50% in throughput, the lower performing systems gain only about 10%. This is to be expected, since there’s little point expediting the launch rate if the system is not capable of getting the climbers far enough out of the way within half a day.

7 Conclusions
We can draw the following table, to be used as a rough guide for the throughput available from a power system: (Throughput again is in units of m_{max}/yr, or STU)

<table>
<thead>
<tr>
<th>p_H: Watt/kg</th>
<th>Daily</th>
<th>Bi-Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STU</td>
<td>STU</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>115</td>
<td>155</td>
</tr>
<tr>
<td>200</td>
<td>230</td>
<td>250</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If we assume a power system that is at least partially solar based, day-cycle operations are a solid assumption, yielding throughputs in the range of 100 – 250 STU for power systems with a power density of 0.5 – 3.5 Watt/kg. These numbers can then be plugged into the Space Elevator Feasibility Condition and compared with acceptable characteristic time constant.

In summary, the universe has once again conspired to make a terrestrial Space Elevator feasible, but just barely so.
8 References

